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Multicompartment Kinetic Models for Lead
I. Bone Diffusion Models for Long-Term Retention
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The long-term retention of lead in bone poses a number of difficulties for the usual
muiticompaniment modeis. The use of diffusion models based on exchange of lead between
blood in canaliculi and the crystalline bone of the osteon allows a linear companimental
approximation suitable for statistical estimation of kineuc parameters in peripheral com-
partments. The model is applied to lead setention by beagle dogs. € 1985 Academuc Press. inc.

- "1. INTRODUCTION

Leadisa per\v'asive environmental hazard in industrialized societies. It is usu-
ally encountered as airborne lead from additives to gasoline. in lead paint. in food
contamination from soldered containers. and in contamination of drinking water
from industnal discharges. A host of personal patterns of exposure are known,
including occupational exposures. cigarettes. consumption of illicitly distilled
spirits, and lead pica. The patterns of exposure have been detailed in many re-
ports. including those of the National Academy of Science-National Research
Council (NAS-NRC, 1972; 1980). A key issue in the regulation of environmental
lead is the establishment of dose-response relationships between time-varying
patterns of exposure to lead and biological precursors of adverse health effects.
The purpose of this note is 10 extend some previous analyses to more complex
models for the kinetics of lead.

Most of the adult body burden of lead is stored in the bone tissues. While the
quantity of lead stored in the teeth is only a small fraction of the total lead burden, =~
tooth lead constitutes a uniquely accessible indicator of cumulative lead exposure
(Steenhout, 1982). Not all of the hard tissues of the body are permanent sinks
for lead. however. While bones retain a large fraction of their lead burden for
many years, another significant fraction of their temporary lead burden may be
returned to the blood over an interval comparable to the residence time of lead
in other tissues, up to 100 or 200 days. Linear compartmental models for lead
retention and distribution in man have been developed by several authors (Ra-
binowitz er al., 1976; Bernard. 1977; Batschelet. 1979). A compartment is as-
sumed to be am bomogeneous and well-mixed physiological pool that supports no
concentratioa gradients internaily so that ion transport appears to be nearly in-
staneous within the compartment. Blood and soft-tissue compartments appear
“fluidlike’’ om time scales of a month or two. But lead retention in bone is another
matter. lons that have entered the bone matrix tend to travel through that matnix
by a process of diffusion, and diffusion of ions through a crystalline matrix can
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be siow. In rather general terms this appears 10 expiain the very long retention
times for lead in the body. since lead has been observed to behave similarly to
the alkaline earth metals such as cailcium. strontium. barium. and radium that are
known as "‘bone seekers.’’ It would be more precise to say that these metals are
bone volume seekers. in contrast to the bone surface seekers such as plutonium
and other actinide elements.

There have been few efforts to incorporate bone volume seeking metals into
compartmental models in which a number of peripheral soft-tissue compartments
are also present. Marcus (1977, 1979) has presented a mathematical formalism
using semi-Markov processes. This methodology may be useful for modelling and
simulation. but poses formidable difficulties in statistical estimation of the un-
known kinetic rate parameters. It is precisely these rate parameters which are
needed in order to estimate the poteatial effects of various time-varying exposure
patterns on critical peripheral target organs (e.g., brain, marrow) in which high
concentrations of lead may accumulate and interfere with normal physiological
processes ‘of the: central nervous system and hematopoeietic system. We have
therefore developed a physiologically plausible model for bone diffusion that is
more useful for estimation of kinetic parameters.

2. A MODEL FOR DIFFUSION IN BONE

Many of the basic ideas here have been described by Marshall and Onckelinx
(1968). Bone surface includes the periosteum exposed to extracetlular fluids. the
endosteal surface at the bone marrow, the surfaces of the trabeculae, and (if
present) the Haversian and Volkmann canals. The bone volume includes the
osteocytes. their lacunae. canaliculi. bone crysial. and the organic matrix. From
(Vaughan, 1970):

The blood-vessels that nourish the bone run in the canals of the Hav-
ersian systems. . . . At a little distance from each canal is what is called
a cement line across which the canaliculi do not communicate. The ared
of bone around each Haversian system bounded by a cement line is
known as an osteon.

The radius of an osteon in cortical bone is on the order of 100 um or less. but
there is a great deal of variation in the size of the Haversian canals and osteons.
In the diffusion model considered by Marshall and Onckelinx (1968), it is claimed
that the ions must ultimately reach the bone volume by passing from the blood
vessel in the Haversiaa canal through tiny canals (canaliculi), and that the passage
from a eamalicuius into the surrounding canalicular territory can be described by
a cylindrical diffusion equation. A typical canaliculus in mouse bone has a radius
about 0.075 pm, and the “‘limit of canalicular territory™ has a radius of about
0.85 um4n their model.

Booe surface seekers are affected primarily by two processes: resorption (de-
struction or removal of bone to plasma) and apposition (bone surface formation
due o0 deposition of new bone) which is very important for children. Deposition
occurs relatively slowly in cortical bone in adults, but more rapidly in trabecular
bone. The analogous processes in bone volume are diminution and augmentation
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BONE DIFFUSION MODEL FOR LEAD KINETICS 443

(both of which are modeled here by exchange with blood and extraceilular fluid).
(This description follows Marshall (1969).)

Compartmental models for alkaline earth metals. especially calcium, have been
developed. Marshall (1969, p. 61) exhibits 10 such models: see Jung e al. (1978)
and Heaney (1976) for critical reviews and references. None of these models
directly incorporate bone volume diffusion. Groer and Marshall (1973) did con-
sider diffusion as an alternative model for calcium exchange with serum at the
bone surface. and found that the short-term kinetics of calcium exchange at
resting bone surfaces could be far better described by a simple one-compartment
model than by a model of calcium diffusion directly into the bone at the surface.
However. in order to test this hypothesis they assumed the form of the serum
concentration X(/,7) was a power function

X0 = 27.11 (1093 (¢ + 10)~°3(3000)'3 (1 + 3000)' (for dogs)
X(.0) = 20.83 (100)"-2 (¢ + 100)- "' (for rabbits)

where ¢ is in minutes and X is surface activity of the tracer isotope. The duration
of the experiments was about 400 hr (dogs) and 48 hr (rabbits). The use of power
functions for X(/.¢} was not explained, and indeed cannot be explained on the
basis of a linear compartment model. The diffusion model for bone volume
seekers is a useful alternate explanation.

The numerical “values of the physical constants strongly suggest that we con-
sider the primary mechanism of transfer of metals to bone volume to be the
exchange between blood in canaliculi and bone crystals in the canalicular territory
(see Fig. 1). The radius of the canaliculi is taken as about a = 0.075 um, which
is the inner radius of the canalicular territory voiume in an assumed cylindrical
cross section. and the outer radius of the canalicular territory is about b = .85
um. If ions were deposited only near » = a, most ions would return rapidly to
the blood. But some ions would enter the interior of the canalicular territory and
then exit only after an extended random walk through the crystalline matrix of
the canalicular territory,*either through some other canaliculus or through the
Haversian canal. The other canaliculi are distributed more or less randomly in
the matrix. In a dense networx of canaliculi, the canalicular territory is in the
shape of a polygonal prism surrounding each canaliculus. We believe that a useful
first step can be made by approximating these polygonal prisms by circular cyl-
inders of radius b, with the understanding that & is itself somewhat variable. The
inaccuracy introduced by this approximation is not large compared to other un-
certainties.

The diffusion constant D (area per unit time) provides crucial information on
the time scale of the process. Groer and Marshal (1973) suggest that D = 10-1¢
cm?/sec (as order of magnitude approximation); thus the typical time constant for
random walk must be on the order of 5/D = 7.225 x 10’ sec = 2.29 years. The
time scale for the canaliculus itself is only a¥/D = 6.5 days.

This is the heart of the difficuity in assuming that bone is a single homogeneous

~ well-mixed compartment. The spatial location of the metal ion in bone is impor-

tant, and an ion located inside the canalicular territory may take many years to
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FiG. 1. Schematic model for lead kinetics in which boae is represented as an extended cylindrical

**canalicular terntory.””

escape through some canaliculus or through the Haversian canal. Escape is pos-
sible, however. so that iead sequestered in bone at any age (especially in child-
hood) becomes a significant endogenous lead supply and contributor to blood
lead later in life. -

In order to develop a mathematical mode! for lead ions in the body, it is nec-
essary to specify the ion transport processes involved in all companmems These
are assumed to be:

(a) cylindrical diffusion of ions in the bone volume;

(b) ion escape at the boundaries of canalicular territory,

(c) ion exchange with blood at the canaliculus, and

(d) transport between blood, soft tissues, and boundaries of the canalicular
territory in bone.

Cylindrical diffusion processes are described in several books, but Carsiaw and
Jaeger (1959) is a comprehensive reference. Let 7 denote time and  the distance
from the center of the canaliculus, as in Fig. {.

Let Q(r.¢) be the concentration of metal ions at radius r at time ¢. The basic
diffusion equation is

aQ(r.Vot = D {azg(r.n/aﬂ + (1/r) 3Q(r.tVar}. o

We first specify the outer boundary conditions for loss of ions from the canalicuic.
territory. The radius & serves only to scale the diffusion process, since a com-
pletely homogeneous diffusion into a completely homogeneous medium with reg-
ularly spaced canaliculi (e.g., on a square or triangular lattice) would have zero
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concentration gradient along the surface of the polygonai prism marking the
boundary between adjacent canaliculi. Because the loss of ions is not homoge-
neous. we will assume there is a first-order concentration gradient at radius b.

aQlar = =cQlb @)

where ¢ is a dimensionless gradient flow parameter that can be adjusted to fit the
data.

For ion loss on time scales of a few weeks to many years. we may assume that
most ions returning to the biood from the bone matrix do so through the same
canaliculus by which they were initially deposited. but some ions may return to
the blood by diffusion through the bone matrix to some other canaliculus or
through the Haversian canal. The canaliculus is assumed 1o be a hollow cylinder
of radius a. There is a little loss of accuracy in modeling the kinetics of long-term
diffusion by assuming a relatively thin canaliculus with a = 0, since the diffusion
transit time across the canaliculus is so short (about | week).

It is also convenient to assume simple first-order kinetics for the exchange of
lead between blood (or the diffusible plasma component in blood) and the other
soft tissues, as well as the blood-bone exchange at the canaliculus. Linear kinetic
models are defined by the constant rate of fractional transfer of lead from com-
partment j to compartment i, here denoted k(ij). This assumption has been
explored in detail in (Marcus. 1985a) using the data in (Rabinowitz er al., 1976).
We found that the first-order linear kinetic model with constant k(i) cannot be
rejected at blood lead concentrations less than 30 ug/dl. We also found (Marcus,
1985b) that lead in human blood appears 10 follow nonlinear kinetics at much
higher blood lead levels, say in excess of 60-80 ug/dl; the analyses were based
on data in DeSilva (1981). In this note we will assume linear blood and tissue
kinetics, implicitly assuming lead exposure is not excessive.

An explicit mathematical development for bone diffusion is given in (Marcus.
1983). The basic ideas can be expressed by equations for the rate of change of
bone lead concentration at the ganaliculus. Q(0.7), and among the soft tissue and
biood companiments. Let X(i.r) be the quantity of lead in some nopbone com-
partment i at time t, wherei = |, ... ,n. Boneisi = n. Then

dQ(0,2)/dt = (rate of absorption of lead from blood at the canaliculus)
+ (rate of diffusion of lead into canaliculus from bone volume)
-~ (rate of resorption of lead from bone to blood) 3)
- (rate of diffusion of lead into bone volume from canaliculus)
dX(i.r)/dt = (rate of lead absorption into compartment i from other tissue)
+ (rate of absorption directly into i from canaliculus)
- (rate of flow from compartment i to other soft tissues) (4)
- (rate of loss of lead to bone directly from compartment i).

The mathematical expressions for 0(0.7) and X(i.1) are complicated, using an
infinite sum of exponential functions of time. In praciice these equations can be
well approximated by a compartmental model with a finite number of pools, i.e.,
a finite number of exponential compartments. The key to doing this involves
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analytical approximation of the solutions 8(k) or eigenvalues of the diffusion
equation (1) with boundary condition (2), and ¢ = 0.

The assumed conditions for lead ion loss at the boundary of the canalicular
territory determine the mathematical form of the eigenvalues 8(h). With the
preceding assumptions, the eigenvalues 8(h) are the infinitely many solutions to
the positive solutions to the equation. )

8(h) J, (8(R)) = c Jo (8(h)) = O (5)

where ¢ is the dimensionless parameter in (2), and J, (x) is a Bessel function of
order n. Convenient approximations for 8(h) have been developed by Professor
James A. Cochran of Washington State University and are described elsewhere
(Marcus. 1983). The following even simpler approximations will be used here:

8() = D a(j)¥b? (6)
where
a(l) = 224 + o a(j) = (- Y)mforj=2.3..... (7

For ¢ < |, the approximation is accurate to with 2%. There are thus some
regression coefficients A(ij) that depend on the linear kinetic model for soft
tissue, on the component approximation, and on the initial conditions such that
we can appro:umau: the long-term retention by

X(i.t) = AG.1) exp(=8(1)1) + A(i.2) exp(—6(2)) + ... 8)
Q0,0 = A(a,l) exp(—08(1)1) + A(n2) exp(—6(2)1) + . ... 9)

A technique for fitting the coefficients A(ij) and estimating the parameters
k(i ), DIb?, and c is described below.

3. FITTING THE DIFFUSION MODEL TO DATA

In order to use conventional computer programs such as SAAM 27 (Berman
and Weiss, 1978) to (it a compartmental model to data. it is necessary to estimate
the nonbone fractional transfer rates k(i) for iy = 1, ....n = 1, the rate
coefficient D/b? for bone diffusion. and the dimensionless coefficient ¢ that mea-
sures the gradient for ion loss at the canalicular boundary. The following approx-
imation allows these computer programs to estimate fractional transfer coeffi-
cients k(n./) from tissue into bone and &(i,n) for loss from bone to tissue.

Assume that bone exchanges only with a blood or blood serum pool in which
{ = | denotes the blood compartment. If there were no diffusion. then k(n.n) =
—k(1.n). However, each value of A determines an ecigensystem of size a with
transfer coefficients k(i,j) except for k(n,n) = —k(1,n) — D 8%h)/b2. This suggests
absorption be partitioned among the various components h = 1, 2, 3, . . . cor-
responding to the eigenvalues 8(h) of the diffusion equation, which can be done
in three steps: (a) Omit compartment n and replace it by *‘bone components'* n

+ h h=1,2,...m. (b) Replace the parameter k(n,1) for bone absorption of

tracer from blood. Let k(n + A.1) be the absorption into bone component /!
where the total rate k(n.1) = k{n + 1.1) + k(n + 2,1) + ... is kept the samc.
(c) Replace the normal loss rate k(1,n) by k(1,n) + D 8(h)¥/b? in bone component

‘e .
LS X1

Vi ay e

ooy

) e’
{ = n -
processe-
slow diff,
<an be in

The ap
compartn
ripheral r.
is shown

There 3
estimate ¢
for shon-:
retention.
mental an:
studies of:

. \
FECES
[,

FiG. 2. Sche
e s
bone componer




-.ne diffusion

> canalicular
4). With the
solutions to

5

1 function of
by Professor
»d elsewhere
used here:

(6)

7

‘¢ thus some
adel for soft
s such that

(8)
9)
* parameters

27 (Berman
y to estimate
- 1, the rate
t ¢ that mea-
~ing approzx-
unsfer coeffi-
1ssue.

ool in which
aen k(n,n) =
7 size a with
This suggests
.3....cor
can be done
mponents’ n
bsorption of

>mponent h.
:pt the same.
¢ component

BONE DIFFUSION MODEL FOR LEAD KINETICS 447

i = n + h. This represents combined loss of tracer from bone due to normal
processes such as bone resorption. as weil as the return of tracer to blood by
slow diffusion to the canalicular boundary at 4. The number of components n
can be increased until the mode! fits the data.

The approximation thus consists in replacing the bone diffusion model with n
compartments by a conventional compartment model in which there are m pe-

npheral mammillary pools. each representing an eigenvalue component k. This
is shown symbolically in Fig. 2.

4. LEAD KINETICS IN BEAGLE DOGS

There is relatively little experimental data that can be used to simultaneously
estimate all of the parameters in this model. since observations are required both
for short-term kinetic parameters affecting blood and tissues. and for long-term
retention. Short-term experiments usually involve serial sacrifice of the expeni-
mental animals and determination of tissue concentrations by autopsy. Long-term
studies often involve radioisotope tracers with determination only of whole-body

‘ LEAD INPUT >

8LO0O KIONEY

OTHER

LIVER SOST
TISSUE

JoPOOLa )

SONE COMPONENT
BONE COMPONENT
BONE COMPONENT = = lroOg]s ¢

| 90M comromint  1-ro0La ¢+

L

URE
(3

Fn.z.mmmummmmuwn.mam
““components’” based on eigenvalues of the diffusion model. KMB is the transfer rate from blood to
bone component M to biood.




448 ALLAN H. MARCUS

i (

retention. blood concentration. and possibly excretion. One study which allows
estimation of both short-term and long-term kinetics was developed at the Uni-
versity of Utah (Lloyd et al.. 1970: 1975; 1982). Beagle dogs were injected with
21%ph and observed for several years. Three dogs in the study. all from the
same litter, were injected intravenously with carrier-free *!%Pb, The dog labeied
T2LS was sacrificed at 28 days after injection. whereas TILS survived for 1497
days (4 years) and T3LS for 1100 days (3 years). Whole-body and blood lead were
reported separately for each. cumulative fecal and urinary excretion as an average
for the three dogs. and liver, kidney. skeleton. and other tissue concentrations
for T2LS at 28 days. Because the dogs were littermates. it was assumed that the
average fecal and urinary excretion data and the T2LS tissue data were repre-
sentative of the group. However, there were sufficient differences in blood lead
and whole-body retention that the kinetic models were fitted to data on each
individual dog in order to estimate between individual differences within a single
: litter.

We note that only direct measurement of skeletal lead was in dog T2LS at 28 ci
days. Since the skeleton aiready held 63% of the remaining burden at that time,
it was reasonable to assume that most of the remaining burden was in bone

‘ thereafter.

! Two models were fitted to data from dogs TILS and T3LS. The first was a estimated
: conventional compartmental model that was also fitted to T2LS, as shown in of the inix
Table 1. The second model was the bone diffusion approximation. as shown in almost alw
Table 2. The parameters were estimated with the SAAM 27 program (Bermzn and days of da:
Weiss. 1978). Several passes through the data were required to obtain a good fit, The b--
both in terms of model structure and estimation of parameters. It was possible compas

to estimate parameters for compartments that could not be directly observed, ‘
including ‘‘other (soft) tissues,’" and two additional (presumably bone) compart-

ments with long retention times of about 60 and 3000 days (see Fig. 3). The iniual

A
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i . TABLE | -

L | KINETIC PARAMETERS FOR COMPARTMENTAL MODEL IN BEAGLE DoGS
H From/To Dog TILS Dog T2LS Dog T3LS

BloodNiver 0.830 (0.184) 0.694 0.107) 0.497 {0.129)
Blood/kidney 0.260 ©.180) 0.336 0.171) 0.332 (0.183)
Blood/other ussues 0.161 (0.086) 0.031 (0.043) 0.09¢ (0.067)

Blood/feces 0.0638 (0.0089) 0.0609 (0.0062) 0.0596 (0.0063)
Blood/unne 0.0482 (0.0021) 0.0397 (0.0016) 0.0391 (0.00t6)
Blood/boos ? (deep) 0.0372 (0.0021) 0.0339  (0.0203) 0.0337 (0.0026)
Blood/bons 7 (shallow) 0.0644 (0.0057) 0.0636 (0.0249) 0.0586 (0.0046)
Liver/dlood 0.1 0.071) 0.354 (0.058) 0.282 (0.061)

Liver/fecas 0.0473  (0.0050) 0.0379  (0.0081) 0.0418 (0.0050) R
Kidney/lood 1.716 (1.090) 2.601 (1.292) 2.647 (1.463) ) y

Other tissuss/blood 0.237  (0.096) 0.077  (0.09%) 0.188  (0.09%) -
Bone (deep)biood 0.000302 (0.000039) 0.000301 (0.000329) 0.000476 (0.000080 )
Bone? (shallowWblood 0.0159  (0.0020 0.0160 (0.0138) 0.0135  (0.0018!

Note. Values presented are estimated kinetic parameters in units of days ~'; values in parentheses l wi:;n(.\\-]c; Schen
are standard errors. Data are from Lioyd er al. (1970, 1975). - l vone ¢
.
i
3
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TABLE 2

1 allows KINETIC PARAMETERS FOR COMPARTMENTAL MODEL WITH BONE DIFFUSION IN BEAGLE DoGs

he Ul_“' From/To Dog TILS Dog T3LS

ed with

om the Blood/Mver 0.870 (007 0.7%0  0.07%)

labeled Blood/kidney 0.32? 10.050) 0.266 10.042)

‘or 1497 Blood.other tissues 0.1 10.032) 0.145 0.032)

ror Biood/feces 0.0647  (0.0076) 0.0635  (0.0070)

ad were Biood/urtne 0.0491  (0.0017) 0.042¢  (0.0015)

average Blood.bone (7 = 1) 0.0377  (0.005T) 0.0350  10.0052)
trations Blood bone 1y = ) 0. 0.

that the Blood.bone 4y = }) 0.0662  10.0099) 0.0665 10.0100)

Blood.bone iy = 4.5) 0. 0.

¢ repre- Liverrblood 0.3%  10.036) 0.387  0.042)

»od lead Liverfeces 0.0473  (0.0049) 0.0410  (0.0052)

on each Kidney/blood 2025 (0.25%) 1.980  (0.257)

a single Other ussues/blood 0.244  (0.039 0.245  (0.045)

Dib* (diffusion scale) 0.00032! (0.000050) 0.000290 (0.000047)

LS at 28 ¢ (gradient coefTicient) 0.532  (0.083) 0.967  0.151)

'_at ume. Note. Values presented are esumated kinetic parameters 1n units of days ~'; values in parentheses
in bone are standard errors. Data are from Lloyd er af. (1979).
stwas a estimated standard error of the initial parameter estimate was always set to 100%
hown in of the initial parameter value. The standard errors of the final estimates were
hown in almost always less than 50%. except for dog T2LS for which there were only 28
man and days of data.

good fit, The bone diffusion model provided a good fit to the data as did the usual
~ossible compartmental model (Figs. 4~7). For TILS the error sum of squares for the

served,
“ompar-

he initial 1
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FiG. 4. Observed and predicted fraction of lead dose in blood for beagle dog TILS.
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diffusion model and the ordinary model (in %) were 5.84 and 5.96. respectively,
and for T3LS were 3.69 and 3.93. respectively. While the bone diffusior model
was not strikingly superior overall. it was certainly no worse than a good com-
partmental modei—even with the constraints in time scales for diffusion imposed
by the cylindrical diffusion model. The diffusion model did have more adjustable
parameters, however.
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5 WHOLE-BODY LEAD RETENTION

There are substantial experimental difficulties in obtaining time series data on
lead concentrations in peripheral tissues other than blood for a single subject or
experimental animal. Tissue concentration data at time of autopsy may provide
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very complete information about organ burdens at some point in time. but very
little information about kinetic parameters that are needed to model the changes
in organ burden due to exposure to time-varying environments. The use of a
sample of animals sacrificed at different times provides a cross-section of organ
burdens across some population, but this may not tell us about any given indi-
vidual since the vanation in internal kinetic parameters may be very large even
among animals of the same strain. In order to estimate the population variability
in these kinetic parameters and thus to identify the fraction of the population that
may be most highly at risk to a given lead exposure. it may be necessary to use
only the most readily accessible kinds of measurements—blood measurements
in humans. and blood and whole-body retention in laboratory animals. here de-
noted R(1).

In choosing a method for fitting available whole-body retention data we must
specify the purpose for which the retention function is needed. If the only purpose
is to provide as concise a summary of the data as is possible, then one might
consider a 'generalization of the model proposed in Marshall er al. (1972) which
is a combination of exponentiali and power functions of time r,

R(1) = {A; exp(=vit) + Ay exp(=va){l + t/a}® + Ayexp(=vy)  (10)

in our notation; we shall call this the ICRP model. There is little doubt that this
is the most parsimonious of the models that can be fitted to long-term retention
data for lead (Hursh, 1973) and many other metals (Wise. 1974; Matsubara e? al.,
1981). By use of a formal statistical decision criterion: the Akaike Information
Criterion, Matsubara er al. (1981) found most of the exponential terms unneces-
sary for curve-fitting purposes. :

Unfortunately, curve fitting is not the primary goal of the toxicokinetic data
analysis. The purpose is. rather, 10 see what bounds can be put on the internal
kinetic parameters that determine the distribution of lead to blood and other
organs. It is thus necessary to work with a family of curves that can be sensibly
interpreted in terms of internal mechanisms. In this regard there are few practical
alternatives to the use of the familiar linear compartmental model (Jacquez, 1972).
In a compartmental model with n pools or compartments. each compartmental
retention function (and thus the whole-body retention function R(7)) will be the
sum of, at most, n exponential functions; i.e.,

R(1) = Ayexp(=vit) + Ajexp(=vyt) — ... + A exp(=v,0) an

The longest timescales will differ only slightly from the residence times of lead
ions in the most long-lived compartments (e.g., cortical bone) and so R(f) will
provide at least some tentative information on internal kinetic parameters. It is
known that determination of the parameters of the plasma clearance curve pro-
vides useful limits or bounds on some combinations of the kinetic rate parameters
(Chau, 1977). A similar analysis may be applied to R(¢), but in models with 2
large number n of compartments these bounds may not be useful. However. tt

combination of blood lead observations with R(?) and with certain noninvasis-
measurements such as hair loss, and fecal and urinary elimination of lead. may
allow valid inferences about internal kinetics. We thus adopt the usual compart-
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mental mode! leading to R(1) as a mixture of exponential functions in Eq. (11)
because the results can. in principle. assist in estimating internal distribution of
lead.

A second reason for assuming R(f) is an exponential mixture is that the siow
rate at which lead is lost from bone is probably due to diffusion of lead ions
through the bone matrix (Marshall and Onckelinx. 1968: Marshall. [969: Wise,
1974). A cylindrical diffusion process introduces an infinite spectrum of eigen-
values (time scales). but only a few of these have large coefficients A, so that
even the power function diffusion model can be well approximated by a mixture
of exponential functions with a small aumber n of components. Thus. there are
both practical and theoretical reasons for restricting consideration to compart-
mental models like Eq. (11).

In order to study the distribution of population parameters for lead retention
over long periods of time. it is necessary to have data on individual animals.
Much of the data reported in the literature are based on averages from several
animals. The requirements of long series of individual data points and a large
sample led us 10 use published data on beagle dogs for these analyses. In addition
10 the detailed analyses for beagle dogs TILS and T3LS reported prev:ously,
retention data were given for seven other beagie dogs for 3 to 9 years (Lloyd et
al.. 1970; 1975; 1982). These dogs were from only three litters, however. Hursh

(1973 and 1978) has provided data on two more beagie dogs.

An exponential mixture (Eq. (11)) was fitted to each of these data sets for » of
3-5. Initial parameter estimates were obtained graphicaily by *“peeling,” then
BMD PAR nonlinear regression program (Dixon. 1981) with I/R weighting. In
view of the small numbers of observations for the nine beagles reported by Lloyd
et al. (1975), the standard error estimates for at least some of the components
are quite large. Furthermore. each of the beagles TI5Q4~T21Q! had at least one
observation sufficiently deviant to be given reduced or zero weight. However,
we set aside only those observations whose removal did not much change the
estimated parameters but greatly reduced the estimated standard errors of the
parameter estimates. The two beagles S and U for whom Dr. Hersh provided
data had substantial vaniability in estimated R(r), but also had such a large number
of data values for ¢+ > 7 days that no single observation had much influence.

The parameter estimates for the 11 beagle dogs are shown in Table 3. There is
considerable consistency among beagle dogs in that R(s) shows three regimes at
the longest timescales: (a) 7 to 17% of the lead is retained in a term with time
constant >2200 days; (b) § to 35% of the lead is retained in a term with time
constant 55 to 500 days; (c) 20 to 679 of lead is retained in a term with time
constant 10 to 55 days. All of the data sets could be well described by three or
four exponential terms, even when the aumber of data points was very large (dogs
S and. U). When plotted on a log-log scale, the exponential mixtures gave a
surprisingly good straight-line approximation over a large range of ¢ values and
demonstrate that while the ICRP model or some similar power-function model
may be very convenient, it is not required in order to obtain a close fit to the
data.

An exponential mode! with three or four terms provided an adequate or very
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TABLE ]
ESTIMATED PARAMETERS FOR THREE LONGEST EXPONENTIAL COMPONENTS IN WHOLE-BoODY
RETENTION FUNCTION FOR LEAD

Litter Dog N T LAy v, A, vy A, vy

! TILS tl 1497  15.08 0.0002884 37.54 0.01912 36.69 0.11255
(0.55) (0.0000359) (3.78)  (0.00216) (3.55 (0.01686)

| TILS 10 100 17.67 0.0004627 J1.88 0.01527 42.28 0.09044
(1.29)  (0.0000878) A5.98)  (0.00378) (6.08) (0.01807)

TISQ4e 9 1628 15.14 0.0001078° 11.82 - 0.003421 39.6) 0.02333
(3.00)  (0.0001224) (4.15)  (0.002348) (3.37)  (0.00712)

2 TI6Q2 9 3136 1235 0.0001860 16.83  0.004458  70.82 0.06212
(1.08)  (0.0000408) (2.29) (0.001208) (2.78) (0.021ThH

2 TITQ2 9 3136 1538 0.0001849 1697  0.004808  67.68 0.03970
(0.90)  (0.0000285) (3.03) (0.001333)  (3.54) (0.00579)

"

.3 Ti8Q2 -9¢ 13136 966 0.0 2476  0.003000 65.59 0.05154
0.64) 0.0 (3.10)  (0.000532) (3.26) (0.02066)

2 TI9Q1 9 )4 1032 0.0 16.09  0.001361 73.59 0.03330
0.200 00 0.65) (0.000106; (0.71) (0.00144)

2 T20QI 9 3144 1068 0.0 16.16  0.00277¢  73.16 0.03422
. 0.4 0.0 (3.46) (0.000593) (3.56) (0.00559}

3 T2Q1 9 347 934 00 2197  0.001709 63.69 0.04644
.08 0.0 (4.00)  (0.00434) (3.86)  (0.01886)

S 83 842 6.69  0.000190" 15.65 0.005437 12.12 0.04755
(2.54)  (0.000466) (1.65) (0.001477)° (1.50) (0.0051))

U n 679 8.66  0.000192* 17.45  0.006993  50.09 0.06755

(2.61)  (0.000466) (LTD (0.001778)  (1.78)  (0.00495

¢ Values in parentheses are standard errors. Data on dogs TILS-T21Q1 are from Lioyd er ai. (1970,
1975); data on dogs S and U are from Hursh (1973). *

* N: Number of dita ponts in fit. -

¢ T: Largest time in data set.

¢ Without observation at ¢ = 187 days.

¢ Suandard error of estimate exceeds parameter.

/ Without observation at ¢ = 357 days.

* Without observation at ¢ = 58S days.

good fit for the whole-body retention function of iead 10 sets of 9 to 83 observations
on 11 beagle dogs, for observation times from 7 to 3147 days after injection of
the initial lead dose. The computer-optimized parameter estimates showed a con-
siderable range of variation across these 11 dogs, but also showed a considerable
degree of consistency in the estimated time scales. Thus, whole-body retention
functions can be compared on 3 component-by-componeat basis. among. various-
individuals in a population. However, the differences in timescale parameters v
and coefficients A; suggest that fitting retention functions to aggregated or aver
aged retention data may be relatively meaningless since the average of the pa-
rameters measured for each individual will differ from the parameters estimated
from the averaged data.

A
lJo.
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These statistics can be used to estimate the diffusion parameters from the fitted
exponential time scales v,. using the eigenvalue approximations in Egs. (6) and
(N. Let v, < vs < vy be the three smallest washout rates that can be fitted to the
‘ data (with 1/v, > 60 days). Since for small ¢
288 v, = (D/B?) 8c/(4 + ¢)
o36) vo = (D/b?) 25 #*/16  approximately
044
307 vy = (D/b%) 81 #°/16
13 then ¢ itself can be approximated from the ratios of smallest washout rates
o)
- vylv, = (25 7*128) (4 + c)lc,
171) c = 4/{(128 vy25 wdv)) -1}
970
579) or .
154 vy/v, = (81 m*/128) (4 + c)ic,
066 :
m’ ¢ = 4128 vy81 wv) - 1. .
134) This estimated value of c. can be used to solve for D/b? from v,. The method
Th] is illustrated in Table 4 for all of the 11 beagle dogs. Note that v, = 0 implies ¢
559) . = 0. The estimates derived previously from the detailed compartmental models
6ad for dogs T1LS and T3LS are well approximated from the very crude method used
886) here, but only by assuming that the term involving the true v, has **vanished,”
~<s i.e., corresponds 10 A; = 0. Therefore the second term in the exponential regres-
13 sion model fitted to the data is actually A, exp(~ vy/), so that the ratio vo/v, from
188 , Table 3 is in reality vy/v,. With this modification, the estimated values of ¢ are
495)
1970, - -
- TABLE ¢ . -
ESTIMATES OF DIFFUSION PARAMETERS FROM LONG-TERM WHOLE-BODY LEAD RETENTION
Assuming 2nd component Assuming no 2nd component
»o ¥
Dog vivy ¢ (years) c (years)
TILS .30 0.120 2.2 0.416 7.18
rons T3Ls 32.58 0.252 vy 0.949 8.96
1 of TISQ4 nmn 0.2%9 12.3 0.980 39.9
on- Ti6Q2 4.6 0.340 9.47 1.359 30.69
ble TI7Q2 26.00 0.320 8.94 1.264 28.45
! T18Q2 +R ©.) . 1407 ©.) 45.60
‘o0 T19Q! +R (.) 2708 - ©) 87.6
ous- T20Q1 +0 ©) 15.24 ©.) 9.8
s v; . T21Q1 +0 ©.) 4.2 ©.) $0.04
ser- s 3.6 0.289 7.76 .17 25.16
pa- u 36.42 0.224 6.04 0.828 19.56
Jzed

Note. Data are from Lloyd et al. (1970.. 1975). Table 3. and personal communications from R. D.
Lloyd and J. Hursh.




456 ALLAN H. MARCUS

rather similar (about 0 to 1.36). small enough to justify the approximations used
above. The diffusion timescales 4*/D are long and differ substantially from one
animal to another, 7 to 88 years: however, they are much closer among beagie
dogs from the same litter. -

6. RESULTS

As shown in Table 2. the kinetic parameters relating blood. liver, kidney. and
other tissues. and bone can be estimated with reasonable precision with this
model. In particular. the diffusion scale D/b? and outflow gradient parameter ¢
can be reasonably estimated and appear to be rather different in value for the two
dogs. Of course. such estimates are highly sensitive to the few data values at
large times ¢. It is of considerable interest that the input parameters are positive
only for the longest timescale corresponding to 6(1) (about 3000 days) and the
third longest timescale 6(3) (about 60 days). The input coefficients for 6(2). 6(4).
and 6(5) are best estimated as 0. This suggests that, to a crude first approximation.
we may assume initial deposition of lead in the canalicular termitory close to radius
a so that it is either eliminated quickly by return to the canalicuius. or eliminated
very slowly after diffusion through the canalicular territory to the initial cana-
liculus. The other parameters for soft tissue distribution of lead are much the
same in this model as in the usual compartmental model.

There is also reason to believe that parameters for whole-body retention rea-
sonably estimate those that would be derived from data on blood, fecal and
urinary excretion. and peripheral tissue concentrations if such are available. As
an example. the kinetic parameters from the compartmental model for beagie
TILS in Table | may be used to derive the model R(¢) = 15.13 exp(-0.00025671)
+ 24.17 exp(—=0.01217r) + 54.98 exp(—0.074651) + 2.25 exp(=0.27251) + 2.0
exp(—1.2051) + 1.46 exp(-2.706r). Note that the first three terms differ sub-
stantially from those in Table 3, but that the timescales are at least comparable.
The longest term is the one best estimated in this example. Thus the information
lost in using only R(1) rather than the whole compartmental model may be sub-
stantial. but substantial information remains. On the other hand. the estimates of
the gradient parameter, ¢, in Table 4 are highly consistent.

7. DISCUSSION

Physiologically plausible models can be fitted to data on the long-term retention
of lead in mammals by use of standard methods of compartmental analysis.
Using more realistic models for bone kinetics, it may thus be possible to answer
questions about the mobilization of lead stored in bone pools long after acute or
chronic exposure to lead has ceased. Some of the possible events that couid
increase lead flow are an increase in the diffusion parameter D (e.g., by osteo-
porosis), and an increase in the bone surface gradient parameter ¢ by nutritional
changes. The presence of large bone pools of lead in adults may provide yet
another unexpected hazard caused by undue exposure to the metal, even if the
exposures are low-level chronic doses that do not cause excessive blood leac
levels at the time.

Long-term experiments on humans are not feasible. However, Steenhout (1982)
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has demonstrated an epidemiologic approach to lead kinetics using teeth and
bones. Our calculations suggest that a single exponential term (single bone com-
ponent corresponding to the smallest eigenvalue) may indeed be an adequate
description for bone kinetics in man on a lifetime scale. but additional components
may be necessary on a l-year scale.

Single exponentials for long-term retention in humans have also been proposed
by O'Flaherty er al. (1982) and by Kang et al. (1983). using blood lead data on
workers removed from occupational lead exposures by strikes or by medical
removal protection programs. O Flaherty ef al. find a slight increase in the ap-
parent residence time of lead in blood with increasing duration of exposure. a
finding not replicated by Kang er al. Our analysis suggests that such an increase
in residence time is possible because larger quantities of lead eventually diffuse
to interior parts of the osteon. However, the time-scales described by O'Flahenty
et al. are rather short (ca. 80 to 90 days) compared to those found by Kang et
al. (ca. 160 to 250 days). By analogy with the beagle dog data. these time-scales
probably do not correspond to the longest retention terms (i.e..j = 1, 2) but to
the faster components (j = 3.4, 5, etc.). Longer durations of exposure may thus
increase the coefficients of the components, j = 1, 2, increasing the apparent
half-life of the exponential mixture.

The approach outlined in this paper allows practical fitting of retention func-
tions to models in which diffusion mechanisms play an important role. A class
of problems in which this niay be of use involves clearance of flow-limited sub-
stances by diffusion through an assumed spherical liver acinus (Norwich, 1982);
Norwich and Siu, 1982). Our method allows the inclusion of dther compartments
as well, and does not require the prohibitively costly numerical solution of a
diffusion equation at each iteration of the least-squares program that is used.to
estimate the unknown kinetic parameters. Our method may thus be useful for
fitting other toxicokinetic models. ‘
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